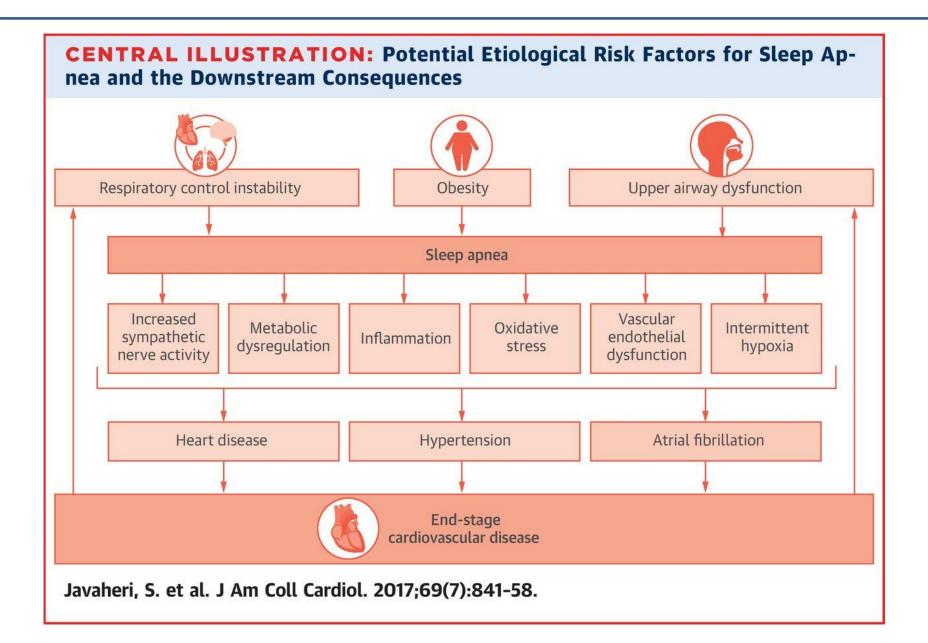


7 & 8 décembre 2018, Berlin


Obstructive sleep apnea and hypertension: why treatment does not consistently improve blood pressure?

Martino F. Pengo MD, PhD

Sleep Disorder Center Department of Cardiovascular, Neural and Metabolic Sciences IRCCS Istituto Auxologico Italiano Milan - Italy

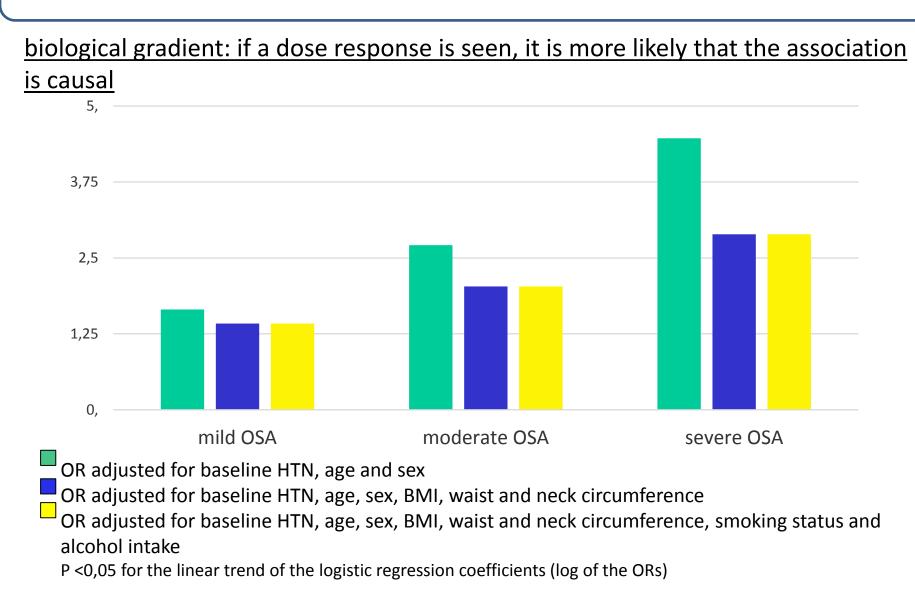
Sir Austin Bradford Hill (1897-1991)

- strength of association
- consistency
- specificity
- temporality
- biological gradient
- coherence
- experiment
- analogy

Do Yellow Nails Cause Lung Cancer?

Temporality: exposure must precede the onset of disease

subgroup of employees of four Wisconsin
state agencies was mailed a four-page
questionnaire on sleep habits, health history,
and demographic information


A stratified random sample of respondents was invited to participate in the study

1189 completed the baseline sleep study

709 partecipated in a 4 years follow up study

184 partecipated in a 8 years follow up study

ODDS RATIO (MODERATE OSA-HYPERTENSION), ADJUSTED FOR BASE-LINE HYPERTENSION STATUS, NONMODIFIABLE RISK FACTORS, HABITUS, AND WEEKLY ALCOHOL AND CIGARETTE USE = 2.89 (1.46–5.64) (p for trend 0,002)

Modified from Peppard NEJM 2000

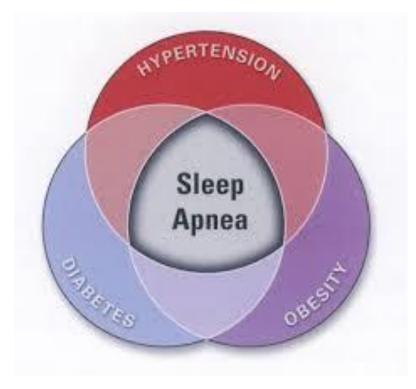
<u>Consistency: same finding replicated by other studies</u> <u>and in multiple different populations</u>

Wisconsin Sleep Study (n=709), follow up 8 years

- 30-60 yo american males and females
- Wisconsin state employes

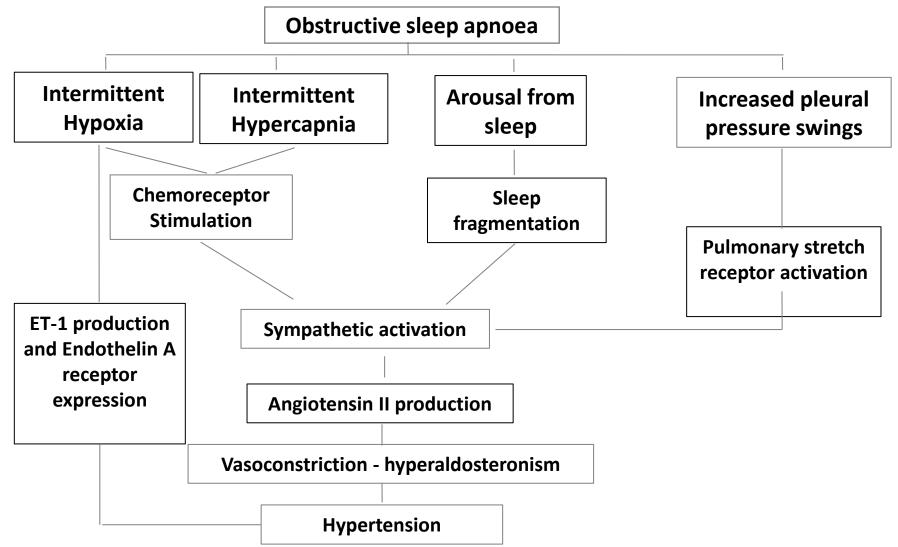
Sleep Heart Health Study (n=6841), follow up 3 years

- drawn from nine existing parent cohorts; most relevant ethnicities represented
- aged 40 years and older


Wisconsin Sleep Study			Sleep Heart Health Study			
Punto de corte IAH	Prevalencia HTA (%)	OR* (IC del 95%)	Punto de corte IAH	Prevalencia HTA (%)	OR* (IC del 95%)	
0	17	1	< 1,5	43	1	
0,1-4,9	28	1,39 (1,04-1,84)	1,5-4,9	53	1,07 (0,91-1,26)	
5-14.9	48	1,92 (1,09-3,39)	5-14,9	59	1,20 (1,01-1,42)	
≥15	60	2.66 (1.13-6.25)	15-29.9	62	1.25 (1.00-1.56)	
			≥ 30	67	1,37 (1,03-1,83)	

Young T. Am J Resp Crit Care Med 2002

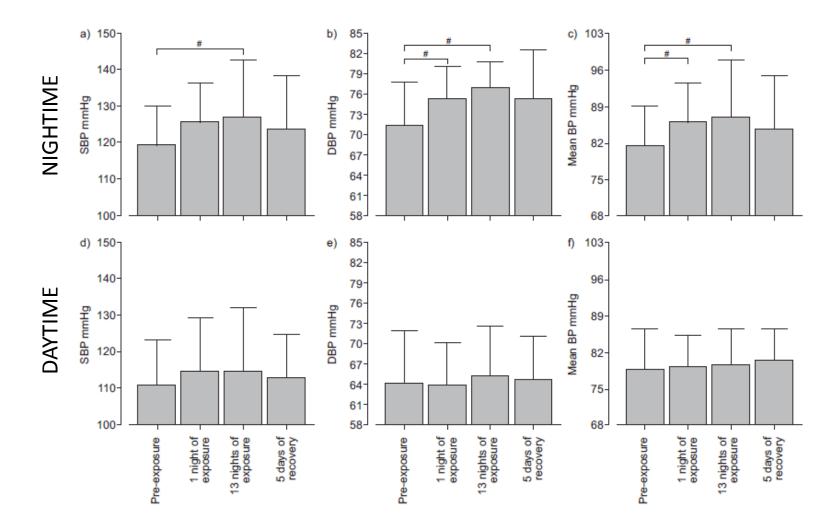
Strength of association: the larger an association between exposure and disease, the more likely it is to be causal


ISSUES:

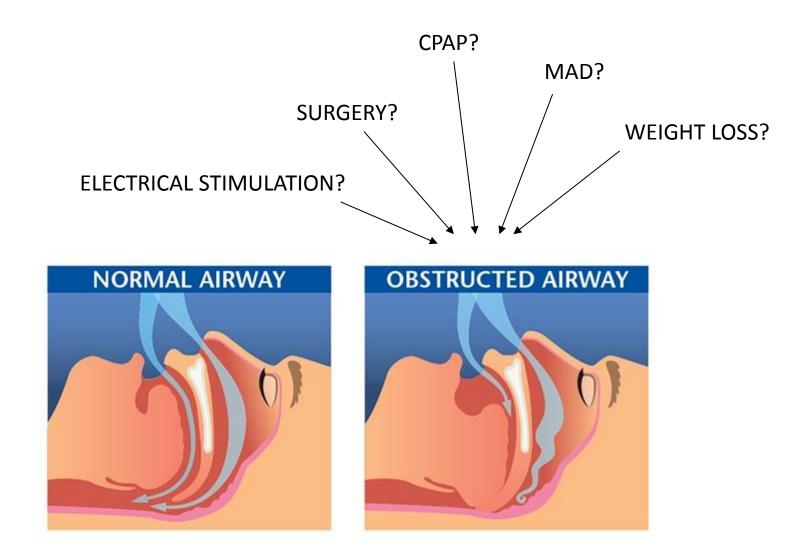
- OSA screening and diagnosis
- HT assessment (office/ambulatory)
- OSA cut offs
- Co morbidities
- Lack of matching (BMI)

biological plausibility and coherence:

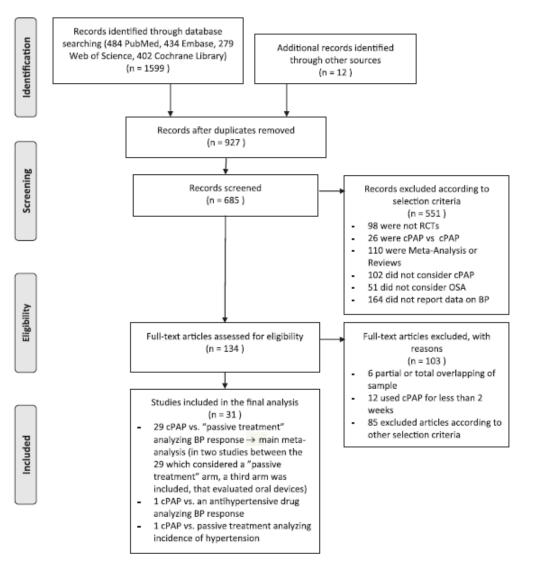
biological models must exist to explain the association



Specificity: the exposure causes only one disease


Tamisier R. ERJ 2011

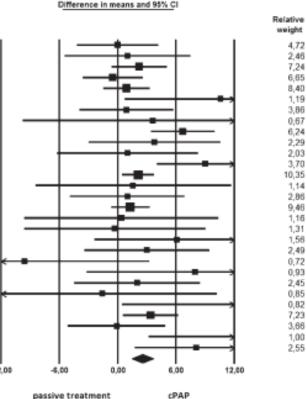
Specificity: the exposure causes only one disease



Tamisier R. ERJ 2011

reversibility: treating OSA must correspond to reducing blood pressure

reversibility: treating OSA with CPAP must correspond to reducing blood pressure

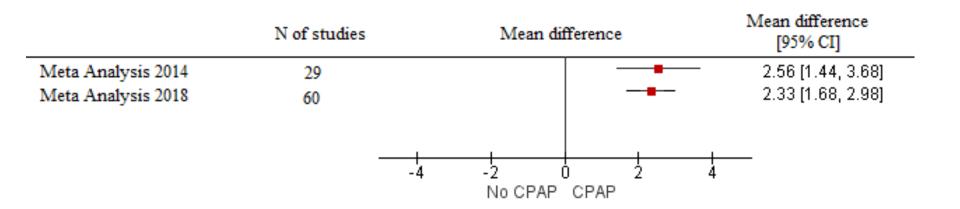


CPAP vs passive treatment (29 RCTs, 1,820 subjects)

Fava C Chest 2014

reversibility: treating OSA with CPAP must correspond to reducing blood pressure

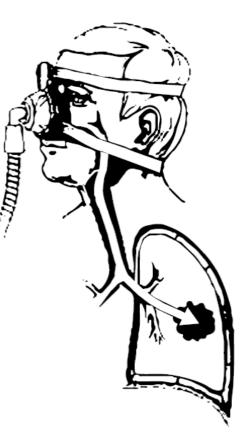
Study name	Statistics for each study						
	Difference in means	Lower limit	Upper limit	p-Value			
Arias MA et al. 2005	0,000	-4,148	4,148	1,000	1	- I	
Barbé F et al. 2001	1,000	-5,456	7,456	0,761		I-	
Barbé F et al. 2010	2,210	-0,605	5,025	0,124			
Barnes M et al. 2002	-0,500	-3,577	2,577	0,750			
Barnes M et al. 2004	0,900	-1,452	3,252	0,453			
Becker HF et al. 2003	10,600	0,763	20,437	0,035			
Campos-Rodriguez F et al. 2006	0,900	-3,910	5,710	0,714			
Comondore VR et al. 2009	3,600	-9,758	16,958	0,597		\rightarrow	
Coughin SR et al. 2007	6,700	3,425	9,975	0,000			
Cross MD et al 2008	3,800	-2,941	10,541	0,269			
Drager LF et al. 2007	1,000	-6,246	8,246	0,787		- +	
Drager LF et al. 2011	9,000	4,042	13,958	0,000			
Durán-Cantolla J et al. 2010	2,100	0,456	3,744	0,012			
Egea CJ et al. 2008	1,600	-8,444	11,644	0,755		\rightarrow	
Engleman HM et al. 1996	1,000	-4,876	6,876	0,739			
Faccenda JF et al. 2001	1,300	-0,664	3,264	0,194			
Hui DS et al. 2006	0,400	-9,568	10,368	0,937	- 1 -	\rightarrow	
lp MSM et al. 2004	-0,300	-9,597	8,997	0,950	_ I -		
Lam B et al. 2007	6,100	-2,346	14,546	0,157			
Lozano L et al 2010	3,000	-3,418	9,418	0,360			
Mansfield DR et al. 2004	-9.600	-22.427	3,227	0.142	< ∎		
Mills PJ et al. 2006	8,000	-3,191	19,191	0,161			
Monasterio C et al. 2001	2,000	-4,471	8,471	0,545			
Nguyen PK et al. 2010	-1,600	-13,399	10,199	0,790	÷ – –		
Noda A et al. 2007	12,500	0,486	24,514	0,041			
Pepperel JC et al. 2002	3,400	0,580	6,220	0,018			
Robinson GV et al. 2006	-0,100	-5,097	4,897	0,969			
Ruttanaumpawan P et al. 2008	14,000	3,223	24,777	0,011			
Takaesu et al. 2011	8,100	1,775	14,425	0.012		1	
Overall effect	2,559	1,437	3,681	0,000			
					-12,00	-6,00	



 OVERALL
 DAYTIME (ABPM)
 NIGHTIME (ABPM)

 SBP 2.6 (0.6) mmHg
 SBP 2.2 (0.7) mmHg
 SBP 3.8 (0.8) mmHg

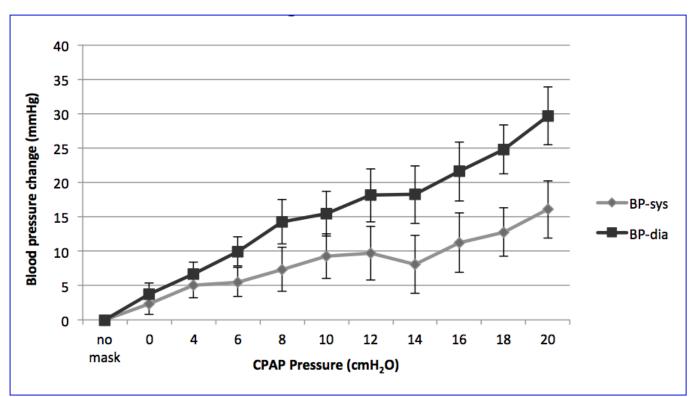
 DBP 2.0 (0.4) mmHg
 DBP 1.9 (0.6) mmHg
 DBP 1.8 (0.6) mmHg


Fava C Chest 2014

Pengo MF, Fava C 2018 in preparation

PROS

- CPAP abolishes apnoeas and hypopnoeas ensuring a normal respiratory control and blood pressure profile
- CPAP reduces sleep fragmentation, improving sleep quality and restoring nocturnal BP dipping
- CPAP improves nocturnal oxygenation therefore reducing renin-angiotensin-aldosterone system and improving BP profile



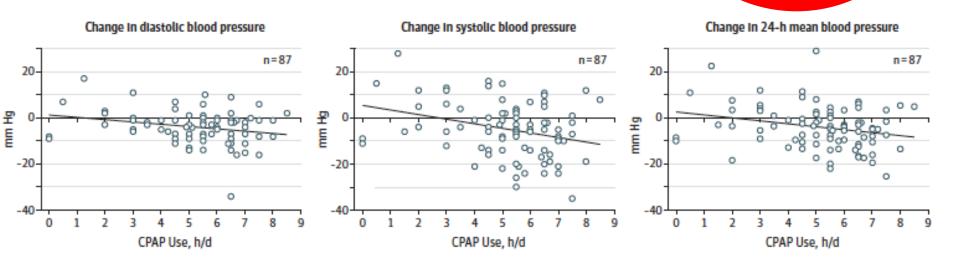
AGAINST

- CPAP can cause hyperinflation of the chest, respiratory system overload with consequent sympathetic upregulation
- Mask leaks can cause patient discomfort and nocturnal awakenings with consequent sympathetic hyperactivation
- Low CPAP compliance leave sleep disordered breathing and the related blood pressure swings untreated

16 patients (13males, 47(10)years, BMI 38.5(5.8)kg/m²) were studied. Baseline BP was 131.0(10.2)/85.1(9.1)mmHg. BP increased with incremental CPAP (systolic BP r=0.960,p<0.001, diastolic BP r=0.961,p<0.001; systolic.

sEMG correlated with both systolic (r=0.464,p=0.032) and diastolic BP (r=0.747,p=0.009).

BMI at baseline?


Daytime sleepiness?

BP at baseline?

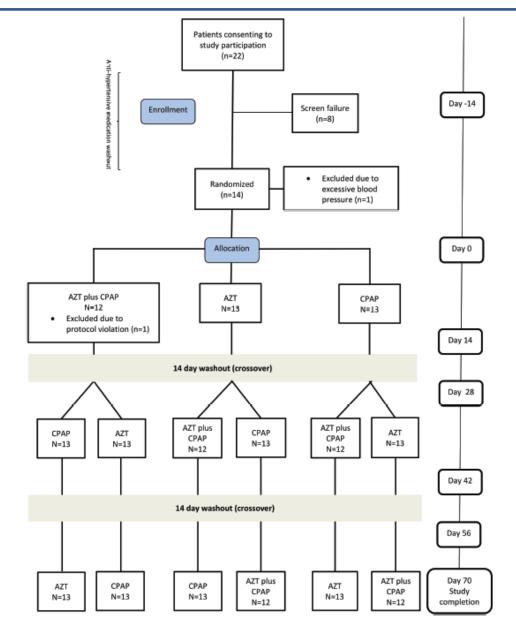
OSA severity?

Pulse rate at baseline as a surrogate for SNS activation?

compliance/adherence?

HIPARCO trial, JAMA 2013

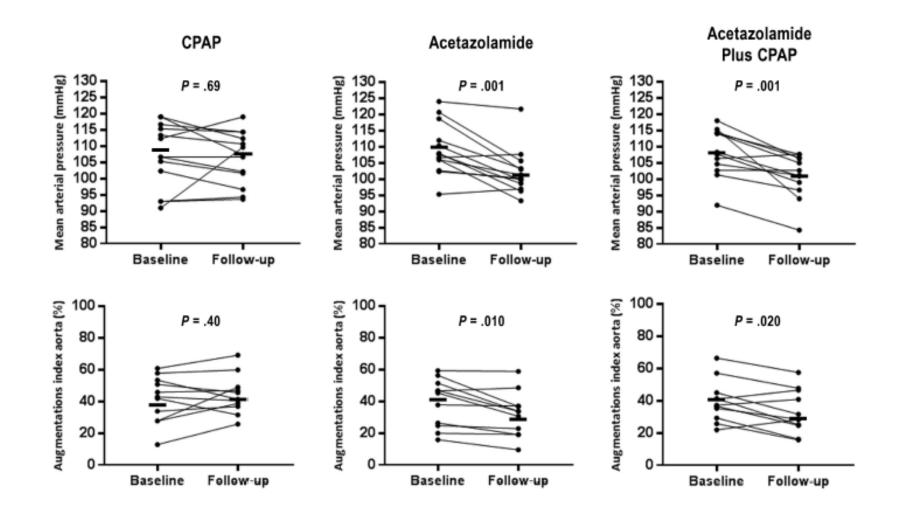
Non


adherent

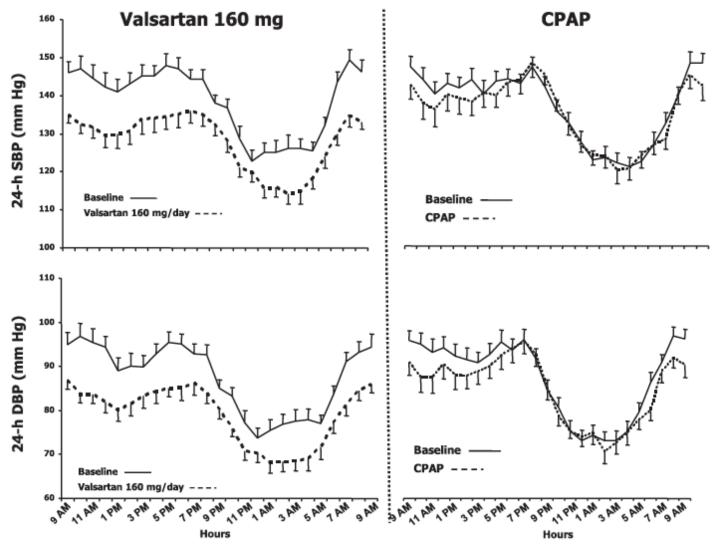
Open-label, randomized, multicenter clinical trial of parallel groups with blinded end point design 194 patients were randomly assigned to receive CPAP (n = 98) or no CPAP (control; n = 96) The mean AHI was 40.4 (SD, 18.9) and an average of 3.8 antihypertensive drugs were taken per patient. The percentage of patients using CPAP for 4 or more hours per day was 72.4%.

	Mean (SD)							
	CPAP Group (n = 98)		Control Group (n = 96)		Intergroup Crudeª Differences	Р	Intergroup Adjusted ^b Differences	Р
	Baseline	Follow-up	Baseline	Follow-up	(95% CI)	Value	(95% CI)	Value
3P variables, nm Hg ^c								
24-h mean BP	103.9 (9.6)	99.8 (14.6)	102.9 (9.6)	102.1 (18.2)	3.1 (0.6 to 5.6)	.02	3.9 (1.3 to 6.6)	.004
24-h SBP	144.9 (11.7)	140.2 (13.1)	143.5 (13.2)	142.3 (17.1)	3.1 (-0.6 to 6.7)	.10	4.2 (0.4 to 8.0)	.03
Diurnal	147.2 (12.1)	144.0 (13.7)	145.1 (13.3)	142.5 (16.2)	-0.3 (-4.0 to 3.5)	.89	1.1 (-2.9 to 5.2)	.59
Nocturnal	141.2 (15.8)	134.6 (16.4)	140.4 (16.8)	137.8 (19.4)	3.7 (-0.8 to 8.2)	.11	5.8 (1.1 to 10.5)	.02
24-h DBP	83.4 (11.1)	79.5 (11.5)	82.6 (10.0)	82.1 (12.7)	3.2 (1.0 to 5.4)	.005	3.8 (1.4 to 6.1)	.002
Diurnal	85.7 (11.6)	82.7 (12.5)	84.6 (10.4)	83.2 (13.2)	1.5 (-0.8 to 3.9)	.20	2.3 (-0.1 to 4.8)	.07
Nocturnal	78.5 (12.4)	75.4 (11.7)	78.6 (11.1)	77.5 (13.5)	2.1 (-0.6 to 4.7)	.13	3.3 (0.5 to 6.1)	.02

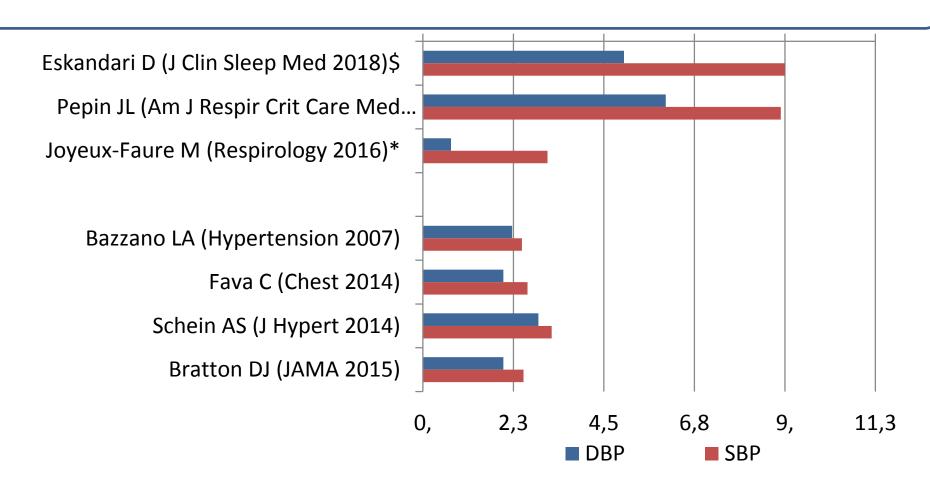
HIPARCO trial, JAMA 2013


13 male patients with hypertension and moderate to severe OSA age 64 ± 7 years,
Body mass index 29 ± 4 kg/m2, apnea-hypopnea index 37 ± 23 events/h

Received acetazolamide (AZT) a carbonic anhydrase inhibitor, CPAP, or AZT plus CPAP for 2-week periods.

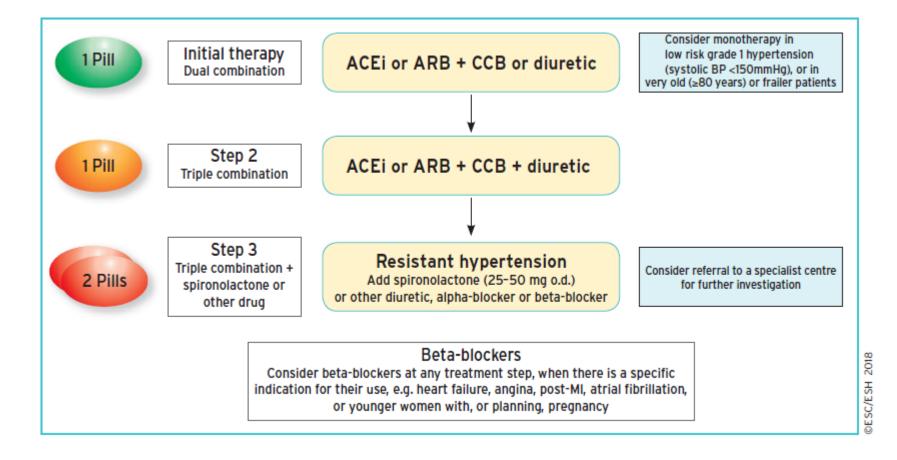

Antihypertensive medication was washed out.

Office and 24-hour blood pressure, arterial stiffness, polygraphic sleep study data, and blood chemistry were compared.


Eskandari D, J Clin Sleep Med. 2018

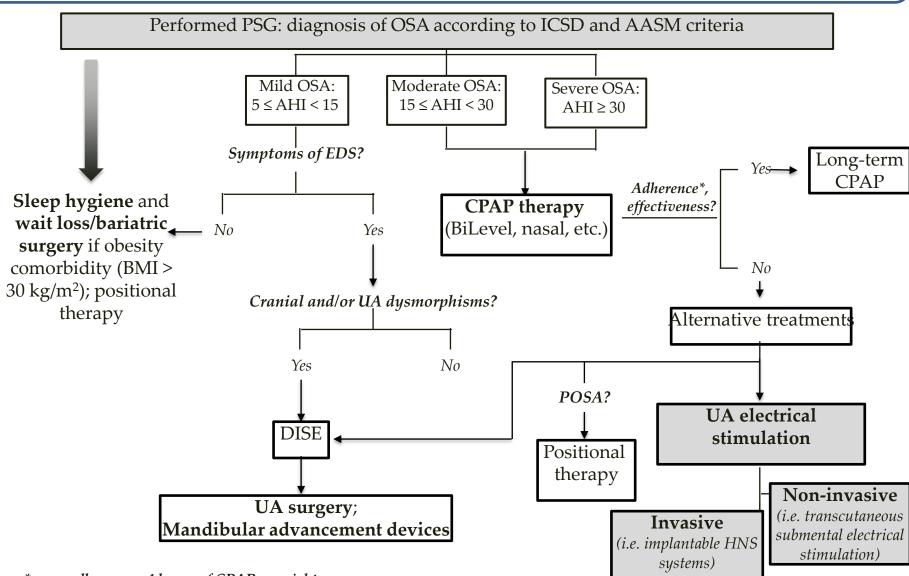
Eskandari D, J Clin Sleep Med. 2018

Pepin JL, AJRCCM 2010


* Difference in office BP change (bosentan-CPAP), p value NS for both SBP and DBP.
SBP=systolic blood pressure, DBP=diastolic blood pressure
Difference in 24h BP change (valsartan-CPAP), p values <0.001 for SBP and 0.002 for DBP.
\$ Difference in office change (acetazolamide-CPAP), p values n/a

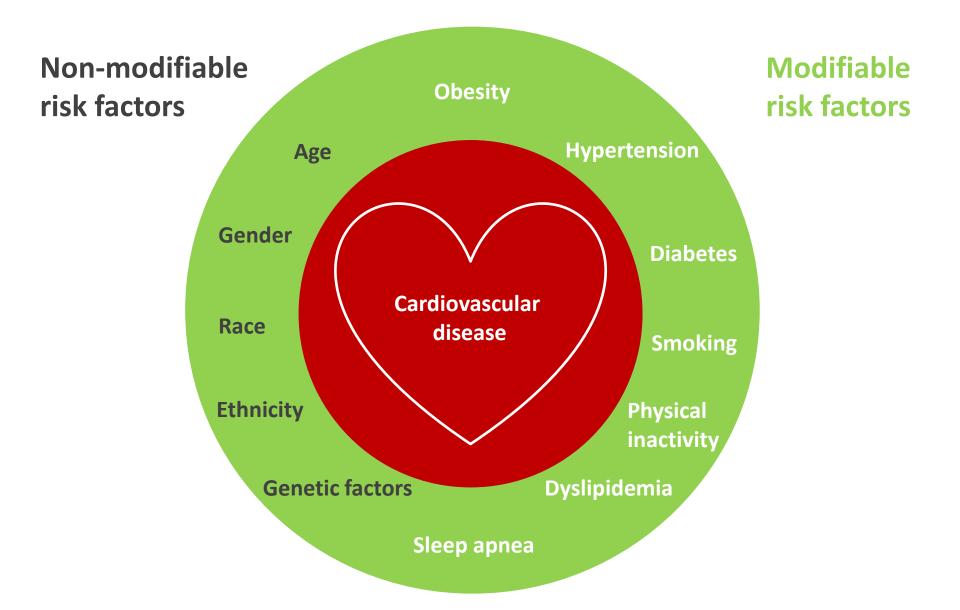
Parati G, Pengo MF Curr Hyp Rep 2018 in press

DANS CETTE CONFUSION, QUE FERONS-NOUS?



HYPERTENSION: A RISK FACTOR FOR CARDIOVASCULAR DISEASES

Mancia G, ESH Hypertension guidelines 2018


SLEEP APNEA: A SLEEP RELATED BREATHING DISORDER

* poor adherence < 4 hours of CPAP per night

Bisogni V Expert Rev Respir Med. 2017

PRIMARY AIM IS TO REDUCE CARDIOVASCULAR RISK

- Association between OSA and hypertension is well documented and a causal relationship can be postulated according to the Bradford Hill criteria
- However, treating OSA does not always mean reducing blood pressure as RCTs showed contrasting results
- Furthermore, the results of the SAVE trial showed that treating OSA does not prevent cardiovascular disease in high risk patients
- Precision medicine and better phenotypisation could help better defining patients who benefit more from treatment

AUXOSLEEP Clinical Sleep Update ™

Milan 18th May 2019

San Luca Hospital, Istituto Auxologico Italiano, Milan

MERCI DE VOTRE ATTENTION Je saisis cette occasion pour vous inviter à Clinical Update Sleep: une conférence internationale qui aura lieu à Milan en mai 2019